Genesys Universal Messaging

Gildas Cherruel (gildas.cherruel@genesys.com)

v. 1.0.4 (Chart: 1.0.4), 2022/04/29



Contents

1 Concepts

2 How to Install/deploy Universal Messaging on Kubernetes
Pre-requisites . . . . . . L
Installing Universal Messaging . . . . . . . . . . . . e
Theautomatedway . . . . . . . . L e
Themanualway . . . . . . . . e e
Installing the beta/Development versions . . . . . . . . .. L Lo
Upgrading Universal Messaging . . . . . . . . . . . . . e
Finetuning . . . . . o o e
Deploying only the servicesyouneed . . . . . . . . . . . . e
Extralogging . . . . . . . o e
Horizontal Auto-Scaling . . . . . . . . . L e
Use a Custom Container Registry . . . . . . . . . . . . . . e
Using external Redis or RabbitMQ . . . . . . . . . . . e
Resource limits and requests . . . . . . . . L L L e
Configuring HTTPS . . . . . . . e
Gettingan FQDN with AWS . . . . . . . . . . e
Gettingan FQDN with Azure . . . . . . . . . . e e e
Getting an FQDN with Google Cloud Platform . . . . . . . . . . . . . . . . . e
Logging Configuration . . . . . . . . . . L L e e
Tips and Tricks for Checking the deployment . . . . . . . . . . . . . . . e
Accessthe Redis Database . . . . . . . . . . L
Backingup the Redis Database . . . . . . . . . . ...
Access the RabbitMQ Dashboard . . . . . . . . . . . L

3 Configuration
Common Settings . . . . . . . .. e
Notifier Destinations . . . . . . . . . . . . e
Commanders . . . . . . . e
Storages . . . ..
Tenants . . . . . .

4 Using the REST API
RESTAPITOrIVRS . . . . . . o e

5 Kubernetes Fundamentals
Google Cloud Platform (GKE) . . . . . . . . . . . . e
Microsoft Azure Container Service (AKS) . . . . . . . . . L L
Amazon Elastic Container Services for Kubernetes (EKS) . . . . . . . . . . . . . ...
Fargate . . . . . o s
AWS EFS CSI Driver for Persistent Volumes . . . . . . . . . . . . . L
Deploy the ALB Ingress Controller . . . . . . . . . . . . e
Deletethecluster . . . . . . . . .
Docker forDesktop . . . . . . . . . e
MICroK8S . . . . .

21
21
21
28
34
35
36
43
46
47

49
49



CONTENTS

Manual Deployment on Virtual Machines/Bare Metal . . . . . . . . . . . . . . 59
Getting Helm 61
Troubleshooting 63

Helmupgradeis stuck . . . . . . . . . . e 63



Chapter 1

Concepts

Genesys Universal Messaging is a collection of micro-services connected with each other via message queueing and managed by
Kubernetes.

Each micro-service is responsible to connect to one service that will provide either a Social Media, a Customer Center Platform, or a
Storage. Some micro-services will, on the other hand, provide a service of their own, like the API, the config website.

Here is a non-exhaustive list of these micro-services:

+ API, provides the REST API to configure and use Universal Messaging;

+ Config, provides a website to configure Universal Messaging;

+ Commander, provides commands to the agent (see later);

+ Apple Messages for Business Connector, interfaces with Apple Messages for Business
+ Bedore Connector, interfaces with the Bedore Bot;

- BizM for KakaoTalk, interfaces with the KakaoTalk Social Media via BizM,;

+ Disqus Connector, interfaces with Disqus Comment Service;

+ Google Business Messages Connector, interfaces with Google Business Messages;
+ Infobank for KakaoTalk, interfaces with the KakaoTalk Social Media via Infobank;
+ LINE Connector, interfaces with the LINE Social Media;

+ Media4U Connector, interfaces with the Media4U SMS Services;

+ PlusMessage Connector, interfaces with DOCOMO +Message Social Media;

+ Telegram Connector, interfaces with the Telegram Social Media;

+ Viber Connector, interfaces with the Viber Social Media;

+ WeChat Connector, interfaces with the WeChat Social Media;

+ Genesys Cloud CX, the Genesys Cloud CX platform;

+ PureConnect, the Genesys PureConnect CX platform;

+ AWS Provider, Amazon Web Services S3 Storage;

+ Azure Provider, Microsoft Azure Blob Storage;

+ Box Provider, Box.com;

+ Dropbox Provider, Dropbox;

+ Google Provider, Google Cloud Storage;

All these services are connected together via the RabbitMQ Message Queueing System. It is used to exchange messages from a Social
Media and a CX platform.

The following diagram describes all micro-services in the context of their relation with the Social Media, CX platforms, and Storage
providers.


https://register.apple.com/resources/messages/messaging-documentation
https://www.kakaocorp.com/page/service/service/kakaotalk
https://www.bizmsg.kr
https://disqus.com
https://developers.google.com/business-communications/business-messages
https://www.kakaocorp.com/page/service/service/kakaotalk
https://global.infobank.net/Message
https://line.me
https://www.media4u.co.jp
https://www.nttdocomo.co.jp/service/plus_message
https://telegram.org
https://viber.com
https://www.wechat.com
https://www.genesys.com/genesys-cloud
https://www.genesys.com/pureconnect
https://aws.amazon.com/s3
https://azure.microsoft.com/en-us/services/storage/blobs
https://www.box.com
https://www.dropbox.com
https://cloud.google.com/storage
https://www.rabbitmq.com

4 CHAPTER 1. CONCEPTS

Bedore  Genesys Cloud

@' KakaoTalk

W& Connector
Y Bedore pi
P &% Connector

@.' LINE
@ u Connemr
+ Disqus

¢ "~ Connector ' == Command

0 Services

g PureC: @ Google
Ingress Confi ureConnect
Cuglmller u 9 “" Connector "" Er der "" Provider
az 0
) -
Drophox

Genesys Cloud p
il " Connector ! &8 povider
@ Azu:e
%" provider

Each micro-service is a collection of Kubernetes Deployments, Services, like:

+ a ClusterlP Kubernetes service,
+ a Deployment,
+ a REDIS (service + Stateful)

Only the Config micro-service does not carry a REDIS.

The micro-services access directly the Social Media, CX Platform, or Storage Provider they support. It is possible to make them access
through a Proxy by using the config website.

A Kubernetes Ingress controller is needed to send the traffic to the respective micro-services. The Ingress Object looks like (not all
properties are show):

apiVersion: networking.k8s.io/v1
kind: Ingress
spec:
rules:
- http:
paths:
- path: /api
backend:
service:
name: XX-api
port: { number: 80 }
- backend:
service:
name: XX-amb-connector
port: { number: 80 }
path: /amb
- backend:
service:
name: XX-bedore-connector
port: { number: 80 }
path: /bedore
- backend:



service:
name: XX-bizmsg-connector
port: { number: 80 }
path: /bizmsg
backend:
service:
name: XX-disqus-connector
port: { number: 80 }
path: /disqus
backend:
service:
name: XX-gbm-connector
port: { number: 80 }
path: /gbm
backend:
service:
name: XX-infobank-connector
port: { number: 80 }
path: /infobank
backend:
service:
name: XX-line-connector
port: { number: 80 }
path: /line
backend:
service:
name: XX-mediadu-connector
port: { number: 80 }
path: /media4u
backend:
service:
name: XX-plusmessage-connector
port: { number: 80 }
path: /plusmessage
backend:
service:
name: XX-telegram-connector
port: { number: 80 }
path: /telegram
backend:
service:
name: XX-viber-connector
port: { number: 80 }
path: /viber
backend:
service:
name: XX-wechat-connector
port: { number: 80 }
path: /wechat
backend:
service:
name: XX-gcloudcx-connector
port: { number: 80 }
path: /openmessaging
path: /
backend:
service:
name: XX-config
port: { number: 80 }



6 CHAPTER 1. CONCEPTS

Notes:

+ The TLS configuration is not included in this YAML.
+ XX should be replaced by the Helm Release name.



Chapter 2

How to Install/deploy Universal Messaging on
Kubernetes

Pre-requisites

As obvious as this may be, you must have a Kubernetes cluster (version 1.18+) to be able to deploy this application. It has to be
production ready. We show here how to get one in the most common environments.

You also must have Helm Charts 3.1+ deployed on that cluster. Please see here.

If you need an ingress controller, you can install the NGINX controller. Most of the modern Cloud vendors (Amazon Web Services,
Microsoft Azure, Google Cloud Platform) already give you an ingress controller.

You should also have received credentials from your GENESYS representative to download container images. If this is not the case,
please contact us.

Installing Universal Messaging

The automated way

The easiest way to install Universal Messaging is the automated way. It takes care of creating the Kubernetes cluster and all that is
needed to run the application.

You can find the install script there: https://artifacts.genesyslab.com/universal-messaging-install.sh

On the plus side, you just have to provide coffee... On the negative side, you have less control over the way the cluster is built. If you
prefer creating the cluster yourself, please go directly to the next paragraph.

Here is the simplest way to deploy Universal Messaging, say on Microsoft Azure (the options here are mandatory):

./install.sh --flavor aks \

--release prod \

--registry-username your-genesys-username \
--registry-password your-genesys-password \
--registry-email your-email

You will see some warning about generating passwords for the application, Redis Database, and RabbitMQ. You can provide each of
them in the options.
Supported flavors are:

+ aks , Microsoft Azure
+ eks , Amazon Web Services
gke , Google Cloud

microk8s , Micro K8S
Here are all the options you can use (mandatory options are marked with a *):

--api-root fqdn-url
The URL used to reach the Universal Messaging API.


./README-get-kubernetes.md
https://helm.sh
./README-get-helm.md
https://kubernetes.github.io/ingress-nginx/deploy
https://artifacts.genesyslab.com/universal-messaging-install.sh
https://artifacts.genesyslab.com/universal-messaging-install.sh
https://azure.microsoft.com/en-us/services/kubernetes-service
https://aws.amazon.com/eks
https://cloud.google.com/kubernetes-engine
https://microk8s.io

8 CHAPTER 2. HOW TO INSTALL/DEPLOY UNIVERSAL MESSAGING ON KUBERNETES

--api-password password
The password for the APl admin user, will be stored in a Kubernetes Secret,
+ --cluster name
The name of the Kubernetes Cluster to be created (when it applies),
--config path (default: ./config.json)
The filename used to store the generated Helm configuration,
--dry-run
Commands are not executed, use this to see what would be executed,
--flavor name*
The Kubernetes flavor to prepare.
Values: aks, eks, gke, microk8s,
--helm-debug
Will run Helm in debug mode, providing more information,
--namespace name (default: messaging)
Universal Messaging will be deployed in this Kubernetes namespace,
--rabbitmg-password password
The password for the RabbitMQ admin user, will be stored in a Kubernetes Secret,
+ --rabbitmg-erlang-cookie cookie
The Erlang Cookie for RabbitMQ, will be stored in a Kubernetes Secret,
--redis-password password
The password for the REDIS database, will be stored in a Kubernetes Secret,
--registry-username name*
The username to use to download Container images from Genesys Container Registry,
+ --registry-password password*
The password to use to download Container images from Genesys Container Registry,
--registry-email email *
The email to use to download Container images from Genesys Container Registry,
--release name*
The name of the Helm Release to create,
--stage name
Will install another Helm chart, docker images than the default production ones.
Try this only in your lab... Some stages are: dev , beta , stage
Other can exist to address various scenarii.
Stages can also alter the generated configuration,
+ --verbose (default)
Will run verbosely, displaying more information,
--workers number
The number of worker nodes in the Kubernetes cluster.
Some Kubernetes flavors have restrictions!

Some flavors can have additional options:

+ Amazon Web Services EKS
+ Microsoft Azure AKS
- --az-resource-group name *
The Azure Resource Group to create,
- --az-resource-location name
The Azure Resource Location to use.
This is mandatory if your account does not have a default location defined,
- --az-sunscription id_or_name
The Azure Subscription to use for billing.

Notes:

+ The API password MUST be complex (must have a score of at least 3 on zxcvbn, test site: https://lowe.github.io/tryzxcvbn), if
notthe xx-set-admin-password job will fail and the Helm Chart deploying will also fail.

+ When installingon microk8s ,you must be logged in the host machine that will run it.

+ There is only 1 node possible with microk8s as of today. You can add more, but by yourself.

+ When installingon Azure ,the script will prevent the number of worker nodes to be less than 3.


https://github.com/dropbox/zxcvbn
https://lowe.github.io/tryzxcvbn

INSTALLING UNIVERSAL MESSAGING 9

The manual way

Before installing and running anything, we must add the Genesys Helm repository:

helm repo add genesys https://charts.genesyslab.com

You can look at the charts that will be deployed by pulling them in advance:

helm pull genesys/universal-messaging

For reference, you can also pull the chart at a specific version, if you need to analyze what it will do:

helm pull https://charts.genesyslab.com/charts/universal-messaging-1.0.3.tgz

Then, we need to create a new Kubernetes namespace:

kubectl create namespace messaging

Since the container images for Universal Messaging are not public, we create the Kubernetes secret that will allow us to download them
from the Genesys Docker registry:

kubectl create secret docker-registry \
--namespace messaging regcred-genesys \
--docker-server=cr.genesyslab.com \
--docker-username=<your-name> \
--docker-password=<your-password> \
--docker-email=<your-email>

The Universal Messaging Application uses passwords to connect services to their RabbitMQ and Redis components. They are stored in
Kubernetes secrets. While, you can let Helm create them randomly, it is advisable to set them yourself. You get better control and you
don't take the risk of losing access to Universal Messaging when you upgrade to a more recent version.

The API service administrator password is required during the install. Helm will complain if it is not provided. That password is not
stored in a secret but in the API service database. It also must be complex otherwise the Helm installation will fail.

tee myconfig.yaml &>/dev/null <<EOM
global:
redis:
password: r3d1sS3cr3t
rabbitmq:
auth:
password: r2bb1tS3cr3t
erlangCookie: MyV3ryB1gS3cr3tCeekle
api:
admin:
password: s1ms3cr3t
api_root: https://www.acme.org
EOM

Finally, we deploy Universal Messaging via Helm:

helm install \
--namespace messaging \
--values myconfig.yaml \
genesys/universal-messaging

You can observe the deployment of all pods by running:

watch -n 1 kubectl get pods --namespace messaging

This chart will install Redis and RabbitMQ along with all services needed to run the Universal Messaging platform.
You should see all pods getting to the running state within a few minutes.

Notes:

+ To configure the ingress, please read the section Configuring HTTPS
- If the Ingress Controller used by your platform requires an ingress class, you should add it in your config.yaml (here with nginx
as an example):


https://charts.genesyslab.com
https://kubernetes.io/docs/concepts/configuration/secret
https://helm.sh
https://github.com/kubernetes/charts/tree/master/stable/redis
https://github.com/kubernetes/charts/tree/master/stable/rabbitmq

10 CHAPTER 2. HOW TO INSTALL/DEPLOY UNIVERSAL MESSAGING ON KUBERNETES

ingress:
className: "nginx"

+ As keeping password in plain text is a dangerous thing to do, we advise you to use file encryption technologies such as Terraform
Vault, Ansible Vault, Mozilla SOPS.

+ You can also let Helm create the passwords by itself (except for the API's admin password that is required). In that case, do not
forget to backup their values before upgrading the Helm chart (See Upgrading Universal Messaging).

+ Thevalue for api_root is optional. See Chapter Using the REST API for a more detailed explanation.

Installing the beta/Development versions
By default, Helm will install the stable version of Universal Messaging and its services.

If you want to try a more recent version than the default (to test a new feature or a fix), you just need to modify which images are
downloaded. Of course, Beta versions are less stable, and Development (dev) versions are very unstable.

We suggest to not do this in production, but on a test cluster, this can be useful.

Let's modify the yaml configuration we prepared previously (or better yet a copy of it):

tee -a myconfig.yaml >/dev/null <<EOM

image: {tag: dev, pullPolicy: Always}
config: { image: {tag: dev, pullPolicy: Always} }
commander: { image: {tag: dev, pullPolicy: Always} }
amb-connector: { image: {tag: dev, pullPolicy: Always} }
bedore-connector: { image: {tag: dev, pullPolicy: Always} }
bizmsg-connector: { image: {tag: dev, pullPolicy: Always} }
disqus-connector: { image: {tag: dev, pullPolicy: Always} }
gbm-connector: { image: {tag: dev, pullPolicy: Always} }
infobank-connector: { image: {tag: dev, pullPolicy: Always} }
line-connector: { image: {tag: dev, pullPolicy: Always} }
mediad4u-connector: { image: {tag: dev, pullPolicy: Always} }
plusmessage-connector: { image: {tag: dev, pullPolicy: Always} }
telegram-connector: { image: {tag: dev, pullPolicy: Always} }
viber-connector: { image: {tag: dev, pullPolicy: Always} }
wechat-connector: { image: {tag: dev, pullPolicy: Always} }
gcloudcx-connector: { image: {tag: dev, pullPolicy: Always} }
pureconnect-connector: { image: {tag: dev, pullPolicy: Always} }
aws-provider: { image: {tag: dev, pullPolicy: Always} }
azure-provider: { image: {tag: dev, pullPolicy: Always} }
box-provider: { image: {tag: dev, pullPolicy: Always} }
dropbox-provider: { image: {tag: dev, pullPolicy: Always} }
google-provider: { image: {tag: dev, pullPolicy: Always} }
EOM

Upgrading Universal Messaging

To be able to upgrade the Universal Messaging deployment safely, you need to ensure the passwords, etc will not be overwritten by the
upgrade process. This is particularly true in an Helm environment such as the one we use: helm upgrade

Before upgrading, if a YAML configuration file was not created, all passwords must be saved as they would get reset during the upgrade
process:

cat <<EOM > config.yaml
global:
redis:
password: $(kubectl get secrets -n messaging \
-1 app.kubernetes.io/name=api-redis \
-0 jsonpath="{.items[0].data.redis-password}"|base64 --decode)
rabbitmq:
auth:
password: $S(kubectl get secrets -n messaging \
-1 app=rabbitmg \


https://registry.terraform.io/providers/hashicorp/vault
https://registry.terraform.io/providers/hashicorp/vault
https://docs.ansible.com/ansible/2.9/user_guide/index.html
https://github.com/mozilla/sops
https://helm.sh

FINE TUNING 1

-0 jsonpath="{.items[0].data.rabbitmg-password}"|base64 --decode)
erlangCookie: $(kubectl get secrets -n messaging \
-1 app=rabbitmg \
-0 jsonpath="{.items[@].data.rabbitmg-erlang-cookie}" |base64 --decode)
EOM

You might also need to add some fields that you used during the installation.

We should also backup the Redis Database:

gum-cli backup --host host --password xxx | \
gzip >| backup-S$(date +%Y%m%d%H%M%S) .json.gz

Once this is done we can launch the upgrade:

helm upgrade rrr -f config.yaml genesys/universalmessaging

Where rrr isthe Helm Release name and replace config.yaml withthe YAML file where you keep the configuration.

Like before, you can observe the deployment of all pods by running:

watch -n 1 kubectl get pods --namespace messaging

Fine tuning

Deploying only the services you need
It is possible to not deploy some of the services, if you know you will never need them in your Universal Messaging instance.

To do so, mark their enabled propertyto false inyour Helm YAML configuration, like this:
bedore-connector:
enabled: false

dropbox-provider:
enabled: false

Extra logging
When you are in the testing phase, you can also turn up the logging to get more information in the logs about what is happening.

To do so, you can simply modify the logging property in your Helm YAML configuration:
line-connector:
logging:
level: DEBUG

Logs are also flushed every so often or when an error occurs (written to their output stream, typically stdout). If you need to ensure the
logs are written when they are generated, change their flush frequency:
line-connector:
logging:
flushFrequency: immediate
level: DEBUG

You can also set default log setting at the global level that are superseded locally:

global:
logging:
level: DEBUG

line-connector:
logging:
level: TRACE

Here all services will log at DEBUG , instead of INFO ,and line-connector willlog TRACE .

Log levels are (in decreasing order):



12 CHAPTER 2. HOW TO INSTALL/DEPLOY UNIVERSAL MESSAGING ON KUBERNETES

+ FATAL
* ERROR
* INFO

+ DEBUG
+ TRACE

The lower in this list the more verbose the logging becomes and the more impact it has on performance. The Default value is INFO .

Horizontal Auto-Scaling

By default, Horizontal Auto-Scaling is configured for the services as follows:

line-connector:
autoscaling:
enabled: true
minReplicas: 1
maxReplicas: 16
targetCPUUtilizationPercentage: 86

You can change these values in your own YAML configuration.

Use a Custom Container Registry
The Container images for Genesys services are provided by https://cr.genesyslab.com at specific versions.
It is possible to use a custom registry to download them faster or simply to alleviate any downtime of the original Container Registry.

Most of the Cloud vendors offer a per-cluster registry. Just download the container images using Docker and upload them to your
registry:

docker login --username xxx cr.genesyslab.com

docker pull cr.genesyslab.com/gum/line_connector

docker tag cr.genesyslab.com/gum/line_connector asia.gcr.io/gum/line_connector

docker push asia.gcr.io/gum/line_connector

Then, change your Helm YAML configuration as follows:

line-connector:
image:
registry: asia.gcr.io
repository: gum/line_connector
tag: xxx
pullPolicy: IfNotPresent

Ifthe tag propertyis notgiveninyour config.yaml, the Helm Chart will use the value from .Chart.AppVersion ,whichisthe most
common situation. Please note that using tags like latest is considered dangerous as it leads to inconsistencies since Kubernetes
does not know when the container image has actually changed.

If youuse microk8s ,you will setthe registryto none and the pull policy to: Never ,and uploading to microk8s registry is done
as follows:

docker pull....
docker save cr.genesyslab.com/gum/line_connector line_connector.tar
microk8s ctr image import line_connector.tar

Using external Redis or RabbitMQ

Genesys uses the Redis Chart and RabbitMQ Chart from Bitnami when deploying Universal Messaging, you can configure them as you
wish in your YAML configuration.

If you prefer to use external Redis or RabbitMQ to host the databases or process the message queuing, you just need to disable them
and configure the access in your YAML configuration.

For example, you might want to use the Universal Messaging platform with an external RabbitMQ Messaging, such as Amazon MQ or
CloudAMQP.

You would simple disable the deployment of RabbitMQ and use the RabbitMQ FQDN from your provider:


https://cr.genesyslab.com
https://docker.com
https://bitnami.com/stack/redis/helm
https://bitnami.com/stack/rabbitmq
https://bitnami.com
https://aws.amazon.com/amazon-mq
https://www.cloudamqp.com/

FINE TUNING 13

global:
rabbitmq:
host: xyz.rmq.cloudamgp.com
vhost: "vhostFromCloudAMQP"
user: "userFromCloudAMQP"
rabbitmq:
enabled: false

And create the Kubernetes secret that will hold the password:

kubectl create secret generic rrr-rabbitmg \
--namespace messaging \
--from-literal rabbitmg-password="p@sswordFremCleud@mqp!"
--from-literal rabbitmg-erlang-cookie="ErlangCooki®86123From12344CloudAQMP"

where rrr isthe Helm Release name

Resource limits and requests

All Helm Charts are configured with Kubernetes resource limits and requests. You can change them as you see fit in your YAML config-
uration, as follows (these numbers are just an example):

line-connector:

resources:
limits:
cpu: 500m
memory: 512Mi
requests:
cpu: 200m

memory: 128Mi

You can find the default values in the Helm Chart of each service. The connector services use these values:
resources:
limits:
cpu: 50m
memory: 64Mi
requests:
cpu: 20m
memory: 32Mi

The storage providers use these values:
resources:
limits:
cpu: 100m
memory: 64Mi
requests:
cpu: 20m
memory: 32Mi

These values were calculated by load testing messages to a Kubernetes instance. The test consisted of blasting 10,000 text messages
to the Social Messages over a few seconds and 1,000 1-MiB images and monitoring the CPU and memory used by the services.

Here is the memory usage (in MiB) of the LINE service, during the image test:



14 CHAPTER 2. HOW TO INSTALL/DEPLOY UNIVERSAL MESSAGING ON KUBERNETES

14.3Mi

9.5Mi

4.BMi

A,
16:34 15:44

And the CPU usage:

0.020

0.015

0.010

0.005

16:36

Similarly, for the Azure provider (memory):

J8.1Mi
28.6Mi
_ T e e e ™ ™
—_— 19.1Mi
——= 9. 5Mi
A,
156:35 16:45% 16:55 17:05

And CPU usage:



CONFIGURING HTTPS 15

. 0.200
0.150
0.100
0.050
— R — :
16:37

Note: The services are written in Go language. Go has a particular way of handling memory allocation. It does not release the memory
released by applications quickly. This allows Go applications to allocate memory back very quickly in case another need comes soon.
That explains why we do not see the memory going down rapidly on the memory graphs.

Configuring HTTPS

In order to connect Universal Messaging to Social Messaging services, you will need to configure outside accesses to the Social Mes-
saging connectors.

The communication is ensured via https. Which means you will need a Fully Qualified Domain Name (FQDN).
Depending on your deployment and your existing infrastructure, this can be achieve in different ways.

1. You already have an external DNS on the Internet and can set an FQDN there,
2. You do not have that or do not want to, you will need to ask the Cloud provider to create an FQDN for you.

The first case is fairly straight forward as it will require only some DNS editing once you get the static Internet IP address. Also, if the
cloud is your own Datacenter (Virtual Machines, Private Cloud, Bare Metal, etc), this will be, most probably, your only solution.

The second case depends heavily on the cloud you use and can be set up only after the LINE integratio is already installed (as we need
some services installed). We will describe the process for a few clouds in a moment.

Getting an FQDN with AWS
You first need to own an IP Domain. If you do not have any, the easiest is to get one from Amazon'’s Route 53 service.
To do that, from the AWS Console go to the Route53 service, click on "Register Domain” and follow the instructions.

Then go to the "Certificate Manager” service, click on "Request a Certificate”, request a public certificate and add your domain "*.mydo-
main.com”.

Once you get the domain and the certificate, you can get the arn of the latter and update the Kubnetes Ingress annotations:
metadata:
annotations:
alb.ingress.kubernetes.io/listen-ports: '[{"HTTPS":443}, {"HTTP":80}]'
alb.ingress.kubernetes.io/certificate-arn: arn:aws:acm:ap-northeast-1:123456:certificate/xxxx
alb.ingress.kubernetes.io/actions.ssl-redirect: '{"Type": "redirect",
"RedirectConfig": { "Protocol": "HTTPS", "Port": "443", "StatusCode": "HTTP_301"}}"'

Make sure the third line fits in one line, we had to split it in two to fit on the document page.
Use the arn of the certificate from the AWS console.

Finally add a new CNAME to your DNS zone and alias it to the ALB DNS from the ingress. This can be done directly in the AWS Console
or with the command line:



16 CHAPTER 2. HOW TO INSTALL/DEPLOY UNIVERSAL MESSAGING ON KUBERNETES

target=$§(kubectl get ingress \
--namespace messaging \
prod-messaging \
--output jsonpath='{.status.loadBalancer.ingress[0].hostname}' \

)

cat > cname.json <<EOM

{
"Changes": [{
"Action": "CREATE",
"ResourceRecordSet": {
"Name" : "messaging.acme.com”,
"Type": "CNAME",
"AliasTarget": {
"DNSName": "S${target}",
"EvaluateTargetHealth": false
}
}
H
}
EOM
zoneid=$§(aws route53 list-hosted-zones --output json \
jq -r '.HostedZones[] | select(.Name == "acme.com.") | .Id' |\
cut -d/ -f3

)

aws route53 change-resource-record-sets \
--hosted-zone-id $zoneid \
--change-batch file://cname.json

Note: static IP addresses, names, and certificates are paying options with Amazon Web Services and they are not the responsibility of
Genesys.

Getting an FQDN with Azure

Firstyou need to getthe Helm release name and the external IP address that was assigned tothe ingress service (reverse proxy):

RELEASE=$(helm list --namespace messaging --output json | jq -r '.[0].name")
PIP=§(kubectl get ingress \

--namespace messaging \

--selector "app.kubernetes.io/instance=SRELEASE" \

--output jsonpath="{.items[0].status.loadBalancer.ingress[@].ip}")

Then you need to ask Azure for an FQDN:

RESOURCEGROUP=$(az network public-ip list
--query "[?ipAddress!=null]|[?contains(ipAddress, 'S$PIP')].[resourceGroup]"”
--output tsv)
PIPNAME=S(az network public-ip list \
--query "[?ipAddress!=null]|[?contains(ipAddress, 'SPIP')].[name]" --output tsv)
az network public-ip update \
--resource-group SRESOURCEGROUP \
--name SPIPNAME \
--output table \
--dns-name acme-messaging

Replace the dns-name option with the name you want to use. After a few minutes you should get a response from aks in the
form of a JSON object.
The property .dnsSettings.fqdn will contain the fqdn you can use for your LIS installation.

The next step is to get a certificate that will authenticate this FQDN. This will depend on the certificate provider you use.

If you forget the FQDN, you can always get it from Azure:

az network public-ip list \
--query "[?ipAddress!=null]|[?contains(ipAddress, 'SPIP')].[dnsSettings.fqgdn]" \



LOGGING CONFIGURATION 17

--output tsv

Note: static IP addresses and certificates are paying options with Microsoft Azure and they are not the responsibility of Genesys.

Getting an FQDN with Google Cloud Platform
First, you need to get a static IP address for your Kubernetes cluster:

gcloud compute addresses create my-static-ip --global

Once this is done, you can get its value like this:

gcloud compute addresses describe my-static-ip --global

Update the Ingress definition with the following annotation:

kubernetes.io/ingress.global-static-ip-name: my-static-ip

Also, all services accessible via the ingress must have the type NodePort , so you should update them in your config.yaml. For
example:
api:
service:
type: NodePort

Note: It can take a few minutes for the Ingress to reflect the IP address.
For the FQDN, you have several choices:

+ you can ask Google for an FQDN at Google Domains

+ you have your own FQDN, you just need to point your nameserver to the static from Google, and configure your SSL certificate
accordingly.

* You can also use nip.io or sslip.io to get an FQDN automatically (typically, the FQDN is <static-ip>.nip.io )

You can also use a Google-managed SSL certificate.

Note: static IP addresses, names, and certificates are paying options with Google and they are not the responsibility of Genesys.

Logging Configuration

We recommend you to use the logging solution that is available with your cloud provider.

+ On Google Cloud, the best is to use the default Stackdriver logging.

+ On Microsoft Azure, Log Analytics will be the preferred way.

+ On Amazon Web Services, using the Amazon Elastic Container Service for Kubernetes (EKS), the logs are integrated automatically
with Amazon CloudWatch and CloudTrail.

Now, if you want to run your own logging support, it is possible as well. There is a good tutorial on how to deploy Elasticsearch and
Kibana on the Kubernetes website itself.

See also:
+ Setting Up Logging with Kubernetes
You can also read the logs via kubectl logs directly:

kubectl logs -n messaging -1 --tail --follow -1 connector=gcloudcx | \
bunyan -L -o short

To pretty-read the logs, please get the bunyan log reader or run it through bunyan in Docker

Tips and Tricks for Checking the deployment

Access the Redis Database

To connect to the Redis database (from within the cluster), you can run a container with the Redis Client ( XXX is the name of the Helm
Release):


https://domains.google/
https://nip.io/
https://sslip.io/
https://cloud.google.com/load-balancing/docs/ssl-certificates/google-managed-certs
https://cloud.google.com/compute
https://kubernetes.io/docs/user-guide/logging/stackdriver
https://azure.microsoft.com
https://docs.microsoft.com/en-us/azure/log-analytics/log-analytics-containers
https://aws.amazon.com
https://aws.amazon.com/eks
https://aws.amazon.com/cloudwatch
https://aws.amazon.com/cloudtrail
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/kibana
https://kubernetes.io/docs/tasks/debug-application-cluster/logging-elasticsearch-kibana/
https://blog.codersociety.com/setting-up-logging-within-kubernetes-on-aws-9840c72208c7
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs
https://www.npmjs.com/package/bunyan
https://hub.docker.com/repository/docker/gildas/bunyan

18 CHAPTER 2. HOW TO INSTALL/DEPLOY UNIVERSAL MESSAGING ON KUBERNETES

REDIS_PASSWORD=$(kubectl get secret \
--namespace xyz RRR-redis -o jsonpath="{.data.redis-password}" \
| base64 --decode)
kubectl run --namespace xyz redis-client --rm -it \
--image bitnami/redis:6.2.5 -- redis-cli \
-h RRR-MMM-redis-master-0.xyz.svc.cluster.local \
-a SREDIS_PASSWORD

Replace xyz by the Kubernetes namespace, RRR by the Helm release name of your deployement, and MMM the microservice
name ("gcloudcx-connector”, for example).

Or, if you have redis-cli installed on your machine, you can forward ports with Kubernetes:

kubectl port-forward service/xyz-MMM-redis-master 6379:6379
redis-cli -a SREDIS_PASSWORD

Then, you can use the REDIS query language to check things, e.g.:

keys config:*

Backing up the Redis Database
Genesys provides a client tool to backup and restore the database.
You can download it from:

+ Linux: https://artifacts.genesyslab.com/gum-cli-1.0.12.linux.7z
+ MacOS: https://artifacts.genesyslab.com/gum-cli-1.0.12.macos.7z
+ Windows: https://artifacts.genesyslab.com/gum-cli-1.0.12.windows.7z
+ Docker: cr.genesyslab.com/gum/gum-cli
To backup the database, you just run the following:

gum-cli backup --host host --password xxx --output backup.json

Where xxx isthe administrator password for the API.

You can run some more complex command that will compress the backup and use the current date in the filename:

gum-cli backup --host host --password xxx | \
gzip >| backup-S$(date +%Y%m%d%H%M%S).json.gz

To restore the database, simply run:

gum-cli restore --host host --password xxx -i config.json

If the backup was compressed, then you would run this:

zcat backup-20210805230466.json.gz | gum-cli restore --host host --password xxx

You can store the default values for gum-cli in SHOME/.config/gum-cli/config or SHOME/.gum-cli in YAML:

host: host.local.net
password: xxx

Then you do not need them on the command line anymore: gum-cli backup -o config.json

You can get logs from gum-cli execution by doing thing:

gum-cli backup --log mylog.log --host host --password xxx --output backup.json

To get more verbose logs:
DEBUG=1 gum-cli backup --log mylog.log --host host --password xxx --output backup.json
To read the logs, please get the bunyan log reader or run it through bunyan in Docker

Finally, you can get the documentation by running:

gum-cli --help


https://artifacts.genesyslab.com/gum-cli-1.0.12.linux.7z
https://artifacts.genesyslab.com/gum-cli-1.0.12.macos.7z
https://artifacts.genesyslab.com/gum-cli-1.0.12.windows.7z
https://www.npmjs.com/package/bunyan
https://hub.docker.com/repository/docker/gildas/bunyan

TIPS AND TRICKS FOR CHECKING THE DEPLOYMENT 19

Access the RabbitMQ Dashboard
If you did not set your own user, the chart will setitto user .

if you did not set your own administrator password, the chart will create one. To retrieve the password:

RABBITMQ_PASSWORD=$(kubectl get secret \
--namespace Xyz RRR-rabbitmq -o jsonpath="{.data.rabbitmg-password}" \
| base64 --decode)

The RabbitMQ service is accessible to the pods in the cluster on port 5672 and its web dashboard on port 15672 atthe DNS name:
RRR-rabbitmg.xyz.svc.cluster.local

Then forward the dashboard port of RabbitMQ:
kubectl port-forward --namespace xyz service/RRR-rabbitmgq 15672:15672

Finally, go to [http://127.0.0.1:15672] to get to the RabbitMQ Management site.

Replace xyz by the Kubernetes namespace and RRR by the Helm release name of your deployement.



20

CHAPTER 2. HOW TO INSTALL/DEPLOY UNIVERSAL MESSAGING ON KUBERNETES



Chapter 3

Configuration

The Universal Messaging application can be configured either via a website or its own REST API. The latter will be explained in the next
chapter.

The configuration website is available at the main URL of the application. For example:
https://messaging.acme.com

When you get connected, you need to enter the administrator’s credentials that were configured during the installation:

Do

S GENESYS [ Tenants & Storages %4 Settings

Please log in...

Username
=

Password
T m

Once you are logged in, you can configure the Universal Messaging application.

Note: You can change the language of the website with the Language Menu in the bottom-right.

Common Settings

In the "Settings” page, you can configure things such as:

+ the Outbound Proxy. All services that access the Internet will use that value.
+ the Notifier Destinations. Allows services to "tell” when they start/stop, ...
+ the Default Commander (See the section about Commanders)

Notifier Destinations
You can set any number of supported Notifier Destinations. Services will send messages to all of them.

Typically, services will send messages when after they have started successfully and before they shutdown. If a service uses more than
one Kubernetes Pod, every Pod will send notifications.

Note: Setting Notifier Destinations, while very useful, does not replace proper monitoring and alerting that you should set up at the
Kubernetes level (AWS Cloudwatch, Azure Monitor, Google Cloud Monitoring, etc). When Pods cannot start enough, they will never send
notifications, and supporting Kubernetes Deployments like Redis and RabbitMQ, being third party applications, cannot send notifications.
For example, if the Redis database does not start, the connector services that uses it will also not start properly, but since it needs the
database to retrieve its configuration, it will not be able to send notifications.

21



22 CHAPTER 3. CONFIGURATION

Slack

To setup Slack, you need to create an account on their website (you can use your Google Account or your ApplelD, or any email account).

Once you have created an account, click on the "CREATE A NEW WORKSPACE" button on the top right of the page. You can also do this
from the Slack application on your Desktop or your smartphone.

Type the name of the workspace you want to create:

Step1of3

What’s the name of your
company or team?

This will be the name of your Slack workspace — choose something that your team will recognize.

‘ Genesys!Tesﬂ 38

Let anyone with an @genesys.com email join this workspace.

Add a new channel:

Step 2 of 3

What'’s your team working on
right now?

This could be anything: a project, campaign, event, or the deal you're trying to close.

production| 70 ]

Next


https://slack.com
https://slack.com

COMMON SETTINGS 23

Step 3 of 3

Who do you email mo
about production?

To give Slack a spin, add a few coworkers you talk with regularly.

[ |Ex. ellis@genesys.com

® Add another ¢ Get a sh

Add Teammates Skip this step

You can add team members or skip the next step:

After the workspace is started, go to its settings:



24 CHAPTER 3. CONFIGURATION

Genesys/Test ~ @

Genesys/Test
genesystestworkspace.slack.c...

Your workspace is currently on the free
version of Slack. See plans

#production ~ {1

1 a bookmark

Invite people to Genesys/Test

Create a channel

Preferences
Settings & administration Settings

Workspace settings
Tools Customize Genesys/Test

Edit workspace details

Add workspaces >
Switch workspaces > P
Open the desktop app gk Manage members

Manage apps
Sign in on mobile § BE app

Si tof G t
'gn out of Genesys/Tes This is the very beginning of the #production

This ehannel is for working on a nroiect. Hold

Click on "Configure Apps”, and start typing "Incoming Webhooks” in the "Nl Search App Directory” input on the top right of that page:

Q, inco l Browse Manage Build : Genesys W

Incoming WebHooks

= incoxBot

";‘34 Incognito | Anonymous Feedback Bot

And click on the "Add to Slack” button.

Once added, select the channel that will receive notifications, and click on "Add Incoming Webhooks integration”:



COMMON SETTINGS

Post to Channel

Start by choosing a channel where # production .
your Incoming Webhook will post
messages to. or create a new channel

Add Incoming WebHooks integration

By creating an incoming webhook, you agree to the Slack APl Terms of Service.

Once added, copy the Webhook URL from that page and paste it on the Universal Messaging Settings page:

03 Settings
Outbound Proxy a
Proxy URL

http://squid.local:3124

Notifier Destinations

Type Webhook URL Channel

5k | https://hooks.slack.com/services/T02UNJ1TQ5A/BO3AITX5A1 ./| ‘ #production] ./|

| Slack Vv

And click on the "+” sign.

Discord

To setup Discord, you need to create an account on their woebsite.

Then, click on the "+” button on the left bar, to "Add Server” and follow the dialogs:


https://discord.com

26 CHAPTER 3. CONFIGURATION

Customize your server

Give your new server a personality with a name and an
icon. You can always change it later.

SERVER NAME

By creating a server, you agree to Discord's Community Guidelines.

Once created, you can add new text channel, by click on the "+" sign in the "TEXT CHANNELS" collection:

« TEXT CHANMNELS -+

1t general A&



COMMON SETTINGS

Create Text Channel

n Text Channels

CHANMELTYPE

@ # Text Channel

Post images, GlFs, stickers, opinions, and puns

O D) Voice Channel

Hang out with voice, video, and screen sharing

CHANMNEL NAME

# production

& Private Channel G

By making a channel private, only select members and roles will be

able to view this channel.
Cancel Create Channel

Once created, click on the icon, to edit the settings:

1t production FAR .

And select "Integrations”:

27



28 CHAPTER 3. CONFIGURATION

# PRODUCTION TEXT CHAN... Infegrafions ®
Overview

ESC
Permissions Customize your server with integrations. Manage webhooks and followed channels that post into this channel.

. Learn more about managing integrations.
Invites

Integrations

Delete Channel []

Create Webhook
& 0 webhooks

Click on the "Create Webhook” button, and copy the Webhook URL:

# PRODUCTION TEXT CHAN... Infegrations » Webhooks
Overview

Webhooks are a simple way to post messages from other apps and websites into Discord using internet magic.
Permissions Learn mare, or try building one yourself.
Invites

Integrations

New Webhook

Delete Channel o
POSTING TO #PRODUCTION
Spidey Bot -
° Created on Apr 6, 2022 by gildas#6805
4+ NAME CHANNEL
Spidey Bot #production v

Minimum 5ize: 128x128
Copy Webhook URL Delete Webhook

Paste the URL on the Universal Messaging Settings page:

Notifier Destinations

Type Webhook URL Channel
Slack B .‘;" https://hooks.slack.com/services/TO2UNJ1TQ5A/BO3AITX5A1G/4 ‘ #production ‘ m
Discord v o: m I https://discord.com/api/webhooks/961180259049410572/]I7Ec «

And click on the "+" sign.

Commanders

Commander is the service that can execute commands sent by the agents from the CX Platforms.

The most common command, as of today, is used to allow the agent to continue a conversation with their guest at a later moment.
Commander configuration can be done on the Settings page, for the Default Commander, or in the Tenant's Commander tab.

The Commander configuration looks like this:



COMMANDERS 29

Google Dialogflow™ Dialogflow Agent Code’

dialogflow-command-continue-1.0.0.zip

Location

Select One...

AL

Language

Select One...

AL

Environment Id

Enter a Dialogflow Environment Identifier (e.g.: draft)

Google Cloud Authentication Project Identifier

Enter an identifier

Client Identifier

Enter an identifier

Client Email

Enter an email

Private Key Identifier

Enter an identifier

Private Key

Enter a private key

The link to the zip file contains the code to import in Google Dialogflow. The location, language, Environment Id are given when you
configure the agent in Google Dialogflow.

To configure Google Dialogflow, you first need to create an Agent on your Google Dialogflow console:

Dialogflow ¢\ ;| . Agents
Essentials
RN a

@ Create new agent

View all agents

Click on "CREATE AGENT” and fill in the form:



30 CHAPTER 3. CONFIGURATION

continue

DEFAULT LANGUAGE @ DEFAULT TIME ZONE

English — en v (GMT+9:00) Asia/Tokyo -

GOOGLE PROJECT

genesys-line-test

AGENT TYPE
B Set as Mega Agent

Combine multiple Dialogflow agents (i.e. sub agents) into a single agent (i.e. mega

agent).

Here, we gave the agent the name of the Commander command. The actual name does not matter much.

Once created, you need to go to the settings of the agent and click on the "IMPORT FROM ZIP":



COMMANDERS 31

continue :

General Languages ML Settings  Exportand Import  Environments  Speech  Share

EXPORT AS ZIP

Create a backup of the agent

RESTORE FROM ZIP

Replace the current agent version with a new one e
intents and entities in the older version wi

IMPORT FROM ZIP
Upload new intents and entities without deleting the current
ones. Intents and entities with the same name will be
replaced with the newer version

The default Environment (from the same settings page) is called "draft”. Its name needs to be filled in the Universal Messaging config

webpage.

On the Google Dialogflow console, go to the agent’s settings and click on the Project:



32 CHAPTER 3. CONFIGURATION

continue

General Languages ML Settings  Exportand Import  Environments  Speech  Shar

DESCRIPTION

Describe your agent (will be used in Web Demo

integration)

DEFAULT TIME ZONE

(GMT+9:00) Asia/Tokyo -

Date and time requests are resolved using this timezone if

=d in the AP

AGENT AVATAR URI
Define URI to agent avatar that will be used in Web Demo and Hangouts Chat integrations.

GOOGLE PROJECT

Project ID

This will bring you to the Google Cloud Platform console. Go to the "IAM & Admin” section, and to "Service Accounts”, and click on
"CREATE SERVICE ACCOUNT":

Google Cloud Platform  2s testvni9 = Q Searchpr

e IAM & Admin Service accounts § DELETE  +8 MANAGE ACCESS

+2 1AM . . " .
= Service accounts for project "test-vni9"

() Identity & Organization A service account represents a Google Cloud service identity, such as code running on Compute Engine VMs, App Engine apps, or sy
about service accounts.

4, Policy Troubleshooter Organization policies can be used to secure service accounts and block risky service account features, such as autormatic 1AM Gran
accounts entirely. Learn more about service account organization policies.

B Policy Analyzer

B Organization Policies = Filter Enter property name or value

o8 Service Accounts O Email Status Name 4+ Description Key ID Key creation date Actions

No rows to display

And give the service account a name, then click on "DONE":



COMMANDERS 33

Create service account

@ Service account details

Service account name
[ simcommander

Display name for this service account

Service account 1D
simcommander (@test-vni9.iam.gserviceaccountcom M &

Service account description

Describe what this service account will do

CREATE AND CONTINUE

Grant this service account access to project
(optional)
|
© Grant users access to this service account (optional)

DONE CANCEL

Then go in the account setting by click on it on the service accounts list and go to the keys tab:



34 CHAPTER 3. CONFIGURATION

& simcommander

DETAILS PERMISSIONS KEYS METRICS LOGS

Keys

Service account keys could pose a security risk if compromised. We recommend you avoid downloading service account keys and instead use the
Workload Identity Federation . You can learn more about the best way to authenticate service accounts on Google Cloud here .

Add a new key pair or upload a public key certificate from an existing key pair.

Block service account key creation using organization policies.
Learn more about setting organization policies for service accounts

ADD KEY ~

Type Status Key Key creation date Key expiration date

No rows to display

Click on the "ADD KEY” and create a JSON key:

Create private key for "simcommander”

Downloads a file that contains the private key. Store the file securely because this key
can't be recovered if lost.

Key type
(® JSON
Recommended

O P12

For backward compatibility with code using the P12 format

CANCEL CREATE

The JSON authentication file is automatically saved on your computer. On the Universal Messaging Config page, you can either fill in
each field of import the authentication JSON file using the small icon under "Google Cloud Authentication” on the config website.

Storages

Storages are used to store attachments from Social Media and/or CX Platforms when no public URL is available or restrictions within
these systems preventing attachment access.

On the "Storage” tab, Just select the type of Storage you want to define and fill in its credentials from the provider.

Also, set the "Purge Delay” in seconds. This will used by the Storage Provider services to remove attachments that are not used anymore.
After a chat is closed, the services will wait for the given purge delay and then delete the attachments related to that chat from their
cloud storage.

You should select one of the storages you defined as the "Default Storage”. That will be the one used by Tenant's Messaging and CX
Platform by default.



TENANTS 35

Storage

Storage Type

L L]

Select One...

Storage Name

Enter a storage name

Default Storage

Purge Delay

300 seconds (~ 5 minutes)

Tenants

Tenants describe the relationship between a Social Media (Messaging) and a Customer Experience Platform.

The API Authentication allows IVR engines to send messages to Social Medias by sending REST Requests to the Universal Messaging
API. The avaiable Authentication types are:

+ Basic
+ None (which means no authentication necessary, not recommended)

Tenant

General API Authentication CX Platform Commander Messaging

Authentication Type

1

Basic

Username

Enter a username

Password

Enter a password

The CX Platform tab supports the following:

+ Genesys Cloud CX,
* Genesys PureConnect

The Messaging tab supports the following:

+ Apple Messages for Business,



36

+ Bedore Web,
+ BizM KakaoTalk,
+ Disqus,

+ Docomo +Messages,

» Google Business Messages,

+ Infobank KakaoTalk,
+ LINE,

+ Media4U,

+ Telegram,

» Viber,

+ WeChat

CX

Genesys Cloud CX

On the third tab of the Tenant, you can choose the Customer Experience Platform (CX Platform). The first choice allows a connection

with Genesys Cloud CX via its Open Messaging API.

Credentials

In the Genesys Cloud Administration console, go to "People & Permissiom/Roles”, and add a new Role, with the following permissions:

messaging:integration:all , conversation:message:receive ,

People & Permissions

People

Roles / Permissions

Authorized Organizations

Divisions

Roles / Permissions

Role Details

Permissions

OpenMessaging Integration

Show: O All Permissions @ Assigned Permissions

CHAPTER 3. CONFIGURATION

conversation:message:create

Division
Permission Description License Conditions
Aware
Create a message PureCloud 3
Create
Receive a message PureCloud 3
Receive
View conversation messages PureCloud 3
View
Al Assigns all integration permissions, PureCloud 3
Permissions including any future permissions
Create/Add an integration with a PureCloud 3
Add Messaging provider
Delete an integration with a Messaging PureCloud 3
Delete provider
Update an integration with a Messaging PureCloud 3
Edit provider
View integrations created with a PureCloud 3
View Messaging provider

Then, go to "Integrations/OAuth”, and add a new Client and give it the new Role:



TENANTS

Integrations / OAuth

Integrations

Actions

Single Sign-on

OAuth

Authorized Applications

Universal Messaging Client

Client Details Roles
App Name
Universal Messaging Client

Description

This is the Client used by Genesys Universal Messaging

Token Duration (; ds): the ber of ds, b

86400

Grant Types

@ Client Credentials

O Code Authorization

O Token Implicit Grant (Browser)
O SAML2 Bearer

37

5mins and 48hrs, until tokens created with this client expire.

Upon saving, you will receive a Client ID and a Client Secret. Note these as you will need them in Universal Messaging's Config.

Now open the Universal Messaging Config and add a new Tenant, then go to the "CX Platform” tab, and enter the values you received

earlier:

General API Authentication CX Platform Commander

Contact Type:

GENESYS Cloud CX

Associated Storage

Default Storage

Messaging

é@

“»

Region

Japan v %
Client Identifier

4e56bfb3-653f-4fbd-8fe0-dead1685beef v
Secret

2354terdvfddh4wsd5t434tsdfbed5w3avbe v

Open Messaging

Then, give your GCloudCX Open Messaging Integration a name, a token (You can choose any token you like, a UUID for example) and fill
in the Integration WebHook URL:



38 CHAPTER 3. CONFIGURATION

Integration Name

Universal Messaging With XXX v

Integration ID

Integration WebHook

‘ https://there.acme.com/openmessaging v ’

Integration Token

‘ sup3r,_ls3crat v ’

Note: Make sure the Integration URL uses the endpoint you chose to receive all requests and ends with /openmessaging. Most often,
if you used the standard Load Balancer given by your Cloud provider, the URL will be the address obtained when assigning the Load
Balancer.

The Custom Data will be added to the Open Messaging's Participant Data as seen on the Agent’s Ul:
Some data is already set depending on the Messaging Connector that is configured with the Tenant:

media ,

The name of the Messaging Connector, one of:
"Apple Messages for Business”, "Bedore”, "BizM KakaoTalk”, "Disqus”, "Google Business Messages”, "Infobank KakaoTalk”,
"LINE”, "Media4U”, "Telegram”, "Viber”, "WeChat”

capabilities ,
The comma-separated list of capabilities supported by the guest device as provided by the Social Media,
Apple Messages for Business

country , The country where the guest is located,
Viber, WeChat

city , The city where the guest is located,
WeChat

device ,
The device type of the guest, Viber

forum ,
The forum where the conversation was started,
Disqus

+ googleEntryPoint
The Google Entry Point if present,
Google Business Messages

googlePlaceld
The Google Place Identifier if present,
Google Business Messages

googleNearPlaceId
The Google Near Place Identifier if present,
Google Business Messages

group
The group identifier as provided by the Social Media.
Apple Messages for Business

intent ,
The Intent that started this conversation (if any).
Apple Messages for Business


https://register.apple.com/resources/messages/msp-rest-api/messages-received#incoming-messages
https://register.apple.com/resources/messages/msp-rest-api/messages-received#incoming-messages
https://register.apple.com/resources/messages/msp-rest-api/messages-received#incoming-messages

TENANTS 39

locale
Apple Messages for Business, Google Business Messages, Viber, WeChat

province , The province where the guest is located,
WeChat

subscribeScene ,
The place where the guest is,
WeChat

thread ,
The thread where the conversation was started,
Disqus

Agent Name

You can also choose the default name of the agent to show on the Social Media side (provided you choose "Prefix Agent Name” in the
Messaging tab).

Commander usage

Check the "Use Commander” box, if this Tenant will use Commander. Uncheck "Default Commander”, if you want to use a specific
Commander configuration (see the Commander tab of that Tenant).

Enter a Commander Prefix that will be used by agents to send commands to the Commander:

Commander

Use Commander
Default Commander

Commander Prefix

> v

Google maps

You can configure this section to display a nice map when the guests send their location to the agents, as show here:


https://register.apple.com/resources/messages/msp-rest-api/messages-received#incoming-messages

40 CHAPTER 3. CONFIGURATION

morning!

Welcome to GENESYS OpenMessaging

hitps://www.google.com/maps/search/?
api=18query=35.676497%2c139.750250&h|=e

n
= staticmap ~
286 KB
H.'UH.!TJ LaHEN
q Mational
| To
e Bliti conal 4t Library y -~y
\-h:{:ﬂ;; I g-__u:.-.-.J.'-.x .":
S, e e T L i
) @‘ T ,—E‘HHH .'-'
1 Matioe= Dier Buil¥ing \:-'H-EI [ _—-Ilﬂ
| EEE y el L T
Hig 5h QI_L-T . o Q""" rEt Smiey
-tk H.-\.:i.ll:l'llj_l:.ﬁﬁﬁ "”E‘ﬁ".';ﬂ;
i H =y
a0 QIE\; e .--'m_ 53 E""-._‘_ Hap :uumtimj;

To compute the map, you need to enter your Google Maps Key and, eventually, Secret here:



TENANTS 41

Google Maps

Google Maps: These values can be set to display a preview of Locations on the agent's desk. To 